

Subject	Year	Term	
Physics	13	1	
T-0:0			

Topic

Topic 7B Magnetic Fields

Content (Intent)

Prior Learning (Topic) Topic 2 (mechanics), Topic 3 (electricity)

Magnetic field line patterns, Right hand grip rule

Demonstrate motor effect, Fleming's left hand rule

Magnitude of B defined by F = BII (for wire, F = Bqv for charged particles). Application to motors, moving coil meters and loudspeakers.

Magnetic flux density B, flux ϕ and flux linkage N ϕ Origins of EM induction

Faraday's law, $\varepsilon = \frac{-\operatorname{d}(N\phi)}{\operatorname{d}t}$. Lenz's law and energy conservation.

Transformer effect Effect of turns-ratio on transformer output Explain $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ using Faraday's law

Peak and root-mean-square values of current and voltage. $V_{rms} = \frac{V_0}{\sqrt{2}}$ and $I_{rms} = \frac{I_0}{\sqrt{2}}$.

• CORE PRACTICAL 11: Use an oscilloscope or data-logger to display and analyse the potential difference (p.d.) across a capacitor as it charges and discharges

The thermionic effect LINAC principles W = QV. Cyclotron principles $BQv = \frac{mv^2}{r}$

 $r = \frac{p}{BO}$ for a charged particle in a magnetic field

Mass increase as speed increases; particles can never reach the speed of light.

How will knowledge and skills be taught?	How will your understanding be assessed &
(Implementation)	recorded (Impact)
Demonstrations of EM induction, such as magnet falling through coil of wire, or magnet on a spring oscillating though a coil of wires. Simple transformer demonstration Demonstrate Eddy current braking.	Homework Booklet 7B marked and written feedback given Test 7 marked, graded and feedback given

How can parents help at home?

Check that the homework booklet 7B is completed

Helpful further reading/discu	ıssion
Reading	Vocab

ricading	
Advanced Physics for you	
chapters 19,20	

Vocabulary Lists
See front of homework
booklet