

Subject	Year	Term
Chemistry	13	4
	Торіс	
5.3.1 Transition element	S	
Content (Intent)		
Prior Learning (Topic) 1. Pract 2.2.1 Electron structure, 3.2.2		reactions 2,2.1 (especially 2.1.5),
Properties		11, 0.2.2 cm/ancy, 0.2.0 neadx
-	s and ions of the d-block elemen	ts of Period 4 (Sc–Zn), given the atomic
number and charge (see also 2.2.1 d)		
(b) the elements Ti–Cu as transition ele shell	ements i.e. d-block elements tha	at have an ion with an incomplete d-sub-
(c) illustration, using at least two trans	ition elements, of:	
(i) the existence of more than one ox (ii) the formation of coloured ions (s e		n its compounds (see also 5.3.1 k)
		d their importance in the manufacture of
Ligands and complex ions (d) explanation and use of the term lig	and in terms of coordinate (dativ	ve covalent) bonding to a metal ion or
metal, including bidentate ligands		
(e) use of the terms complex ion and c (i) six-fold coordination with an octal	-	les of complexes with:
(i) four-fold coordination with either	•	see also $2.2.2 \text{ g}$ -h)
		ociated with bidentate and multidentate
(i) cis–trans isomerism e.g. Pt(NH ₃) ₂ C	(see also 4.1.3 c–d)	
(ii) optical isomerism e.g. [Ni(NH ₂ CH ₂		
(g) use of cis-platin as an anti-cancer d	rug and its action by binding to I	ONA preventing cell division
Ligand substitution		
(h) ligand substitution reactions and th (i) $12 + 12 + 12 = 1$		in the formation of:
 (i) [Cu(NH₃)₄(H₂O)₂]²⁺ and [CuCl ₄]²⁻ fr (ii) [Cr(NH₃)₆]³⁺ from [Cr(H₂O)₆]³⁺ (see 		
		including ligand substitution involving O ₂
and CO		
Precipitation reactions		
		hanges of aqueous Cu ²⁺ , Fe ²⁺ , Fe ³⁺ , Mn ²⁺ an
Cr ³⁺ with aqueous sodium hydroxide at (i) precipitation reactions	nd aqueous ammonia, including:	
(ii) complex formation with excess ac	queous sodium hydroxide and ac	queous ammonia
Redox reactions		
(k) redox reactions and accompanying	-	
(i) interconversions between Fe^{2+} and		
(ii) interconversions between Cr^{3+} an	d $Cr_2O_7^{2-}$	
un roduction of Cut to Cut and dian	ranartianation of Cut to Cut and	

(ii) Interconversions between or and er207
 (iii) reduction of Cu²⁺ to Cu²⁺ and disproportionation of Cu⁺ to Cu²⁺ and Cu
 (I) interpretation and prediction of unfamiliar reactions including ligand substitution, precipitation, redox.

Future Learning (Topic) 5.3.2 Qualitative analysis & 5.2.3 Redox titrations					
How will knowledge and skills be taught?		How will your understanding be assessed &			
(Implementation)		recorded (Imp	act)		
Practical work		- 1 x standard homework (Grade given.			
Ligand substitution reactions		Written feedback. Response expected.)			
Precipitation reactions		-1 x paper 1 (Grade given. Verbal feedback			
Redox reactions		to class and individuals.)			
Written					
Presentations					
Worked through examples					
Past paper question examples and answers					
Explanation of complex ion formation.					
Explanation of how ligand sub					
important in gaseous exchange.					
How can parents help at home?					
Look at the topic specific resources on the VLE					
Use appropriate websites: MachemGuy, Allery Chemistry, Chemistry World – by Royal					
Society of Chemistry, ChemGuide.					
Take an interest! Ask your children what they have learnt and be curious about their					
learning.					
Helpful further reading/discussion					
Reading	Vocabulary Lis	sts	Careers Links		
Text book: A level chemistry	coloured ions		Medicine		
for OCR by Rob Ritchie and	catalysts		Veterinary science		
Dave Gent. Chapter 24	incomplete d-sub-shell		Material science		
p.400-423	oxidation number		Biomedical sciences		
	ligand		Environmental science		
The Science of Everyday Life	coordinate bond		Toxicologist		
by Marty Jopson	complex ion		Pharmacist		
Why Chemical Reactions	redox		Dentist		
Happen by Keeler and	ligand substitution		Patent law		
Wothers	precipitation		Forensic science		
	bidentate				