Subject	Year	Term	
Physics	12	2	
Topic			

Topic 3 Electricity

Content (Intent)

Prior Learning (Topic) 11P2 Electricity

Current as rate of flow of charge: $I=\frac{\Delta Q}{\Delta t}$
P.d. as work done per unit charge: $V=\frac{W}{Q}$. Define resistance, $R=\frac{V}{I}$,

Ohm's law. Va I for conductor at constant Temperature
Series and parallel circuits Kirchhoff's laws.
$R=R_{1}+R_{2}+R_{3}$ (series resistors) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$ (parallel resistors).
I-V characteristics of: ohmic conductors, filament bulbs, thermistors and diodes
Electrical power, $P=\frac{\Delta W}{\Delta t}=I V \quad P=I^{2} R$ and $P=\frac{V^{2}}{R}$.
Potential divider
Demonstration of variation of resistance of thermistor with change of temperature and LDR with change of light level.
$V_{1}=\frac{V R_{1}}{\left(R_{1}+R_{2}\right)}$. e.m.f as work done per unit charge: $V=\frac{W}{Q}$. e.m.f. and internal resistance. $I=n q v A$.

CORE PRACTICAL 3: Determine the e.m.f. and internal resistance of an electrical cell

How will knowledge and skills be taught? (Implementation)	 recorded (Impact)

Experiments to investigate series and parallel circuits.
Plot I-V graphs for a range of components. Demonstration of a potential divider circuit. Demonstrate the effect on the terminal potential difference of a cell of altering the load across the cell.

How can parents help at home?

Check that the homework booklet 3 is completed

Helpful further reading/discussion

Reading
 Advanced Physics for you chapter 16,17

Vocabulary Lists

See front of homework booklet

Careers Links

