

Subject	Year	Term
Chemistry	12	1 and 2
Topic		

3.1.1 Periodicity.

Content (Intent)

Prior Learning (Topic) KS3 Y8 properties of elements **KS4 Y11** C1 Atomic structure and the periodic table, C2 Bonding, Structure and properties of matter

The structure of the periodic table

- (a) the periodic table as the arrangement of elements:
 - (i) by increasing atomic (proton) number
 - (ii) in periods showing repeating trends in physical and chemical properties (periodicity)
 - (iii) in groups having similar chemical properties

Periodic trend in electron configuration and ionisation energy

- (b) (i) the periodic trend in electron configurations across Periods 2 and 3 (see also 2.2.1 d)
 - (ii) classification of elements into s-, p- and d-blocks
- (c) first ionisation energy (removal of 1 mol of electrons from 1 mol of gaseous atoms) and successive ionisation energy, and:
 - (i) explanation of the trend in first ionisation energies across Periods 2 and 3, and down a group, in terms of attraction, nuclear charge and atomic radius
 - (ii) prediction from successive ionisation energies of the number of electrons in each shell of an atom and the group of an element

Periodic trend in structure and melting point

- (d) explanation of:
 - (i) metallic bonding as strong electrostatic attraction between cations (positive ions) and delocalised electrons
 - (ii) a giant metallic lattice structure, e.g. all metals No details of cubic or hexagonal packing required.
- (e) explanation of the solid giant covalent lattices of carbon (diamond, graphite and graphene) and silicon as networks of atoms bonded by strong covalent bond
- **(f)** explanation of physical properties of giant metallic and giant covalent lattices, including melting and boiling points, solubility and electrical conductivity in terms of structure and bonding
- (g) explanation of the variation in melting points across Periods 2 and 3 in terms of structure and bonding (see also 2.2.2 o).

Future Learning (Topic) KS5 Y13 5.2.1 Lattice enthalpy

How will knowledge and skills be taught? (Implementation)	How will your understanding be assessed & recorded (Impact)	
Written PowerPoint presentation, notes, written examples,	- 1 x standard homework (Level given. Written feedback. Response expected.)	
model answers and past paper questions.	written recuback. Response expected.)	

-1 x end of topic test (Level given. Verbal feedback to class and individuals.)

How can parents help at home?

Look at the topic specific resources on the VLE

Use appropriate websites: MachemGuy, Allery Chemistry, Chemistry World – by Royal Society of Chemistry, ChemGuide.

Take an interest! Ask your children what they have learnt and be curious about their learning.

Helpful further reading/discussion

Reading

Textbook pages 92-106
The Science of Everyday Life
by Marty Jopson
Why Chemical Reactions
Happen by Keeler and
Wothers

Vocabulary Lists

Ionisation
Atomic number
Nuclear attraction
Electron configuration
Ionisation energies
Cation
Anion

Giant metallic lattice Giant covalent Nuclear charge

Careers Links

Analytical chemist
Chemical engineer
Clinical biochemist
Forensic scientist
Pharmacologist
Process chemist
Quality control analyst
Research scientist
Science writer
Site chemist
Teacher or lecturer

Degrees; Chemistry Biochemistry Biomedical science Biological sciences Medicine Research chemist Veterinary medicine