

Subject	Year	Term			
Chemistry	12	6			
Topic					

5.3.1 Transition elements

Content (Intent)

Prior Learning (Topic) 1. Practical skills, 2.1 Atoms and reactions 2,2.1 (especially 2.1.5), 2.2.1 Electron structure, 3.2.2 Rates, 4.1.3 E/Z isomerism

Properties

- (a) the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge (see also 2.2.1 d)
- **(b)** the elements Ti–Cu as transition elements i.e. d-block elements that have an ion with an incomplete d-subshell
- (c) illustration, using at least two transition elements, of:
 - (i) the existence of more than one oxidation state for each element in its compounds (see also 5.3.1 k)
 - (ii) the formation of coloured ions (see also 5.3.1 h, j-k)
 - (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry (see 3.2.2 d)

Ligands and complex ions

- (d) explanation and use of the term ligand in terms of coordinate (dative covalent) bonding to a metal ion or metal, including bidentate ligands
- (e) use of the terms complex ion and coordination number and examples of complexes with:
 - (i) six-fold coordination with an octahedral shape
 - (ii) four-fold coordination with either a planar or tetrahedral shape (see also 2.2.2 g-h)
- **(f)** types of stereoisomerism shown by complexes, including those associated with bidentate and multidentate ligands:
 - (i) cis-trans isomerism e.g. Pt(NH₃)₂Cl₂ (see also 4.1.3 c-d)
 - (ii) optical isomerism e.g. [Ni(NH₂CH₂CH₂NH₂)₃]²⁺ (see also 6.2.2 c)
- (g) use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division

Ligand substitution

- (h) ligand substitution reactions and the accompanying colour changes in the formation of:
 - (i) $[Cu(NH_3)_4(H_2O)_2]^{2+}$ and $[CuCl_4]^{2-}$ from $[Cu(H_2O)_6]^{2+}$
 - (ii) $[Cr(NH_3)_6]^{3+}$ from $[Cr(H_2O)_6]^{3+}$ (see also 5.3.1 j)
- (i) explanation of the biochemical importance of iron in haemoglobin, including ligand substitution involving O_2 and CO

Precipitation reactions

- (j) reactions, including ionic equations, and the accompanying colour changes of aqueous Cu²⁺, Fe²⁺, Fe³⁺, Mn²⁺ and Cr³⁺ with aqueous sodium hydroxide and aqueous ammonia, including:
 - (i) precipitation reactions
 - (ii) complex formation with excess aqueous sodium hydroxide and aqueous ammonia

Redox reactions

- (k) redox reactions and accompanying colour changes for:
 - (i) interconversions between Fe²⁺ and Fe³⁺
 - (ii) interconversions between Cr³⁺ and Cr₂O₇²⁻
 - (iii) reduction of Cu²⁺ to Cu⁺ and disproportionation of Cu⁺ to Cu²⁺ and Cu
- (I) interpretation and prediction of unfamiliar reactions including ligand substitution, precipitation, redox.

Future Learning (Topic) 5.3.2 Qualitative analysis & 5.2.3 Redox titrations				
How will knowledge and skills be taught? (Implementation)	How will your understanding be assessed & recorded (Impact)			
Practical work Ligand substitution reactions Precipitation reactions Redox reactions	- 1 x standard homework (Grade given. Written feedback. Response expected.)			
Written Presentations Worked through examples Past paper question examples and answers Explanation of complex ion formation. Explanation of how ligand substitution is important in gaseous exchange.				

How can parents help at home?

Look at the topic specific resources on the VLE

Use appropriate websites: MachemGuy, Allery Chemistry, Chemistry World – by Royal Society of Chemistry, ChemGuide.

Take an interest! Ask your children what they have learnt and be curious about their learning.

						•	/ I •	
ρ	nt	П	THE	rner	read	iing/	aisci	ussion

Reading	Vocabulary Lists	Careers Links
Text book: A level chemistry	coloured ions	Medicine
for OCR by Rob Ritchie and	catalysts	Veterinary science
Dave Gent. Chapter 24	incomplete d-sub-shell	Material science
p.400-423	oxidation number	Biomedical sciences
	ligand	Environmental science
The Science of Everyday Life	coordinate bond	Toxicologist
by Marty Jopson	complex ion	Pharmacist
Why Chemical Reactions	redox	Dentist
Happen by Keeler and	ligand substitution	Patent law
Wothers	precipitation	Forensic science
	bidentate	