Subject	Year	Month	Balcarras
Mathematics	9	December	
Topic:			
FIBONACCI AND QUADRATIC SEQUENCES 4 Lesso			
Content (Intent)			
Prior Learning Y7 - Continue any given sequence - Finding the nth term of a linear sequence Y8 - Generate a linear sequence from its nth term - Find the nth term for linear sequence - Square positive and negative numbers		Future Learning - Finding the nth term of a quadratic sequence - Compound Interest and Depreciation - using Geometric Sequences	
Objectives - Recognise and use the Fibonacci sequence - Generate Fibonacci type sequences and find the next two terms - Generate terms of a quadratic sequence from a written rule (and continue a given quadratic sequence) - Generate terms of a quadratic sequence from its nth term		For teaching purposes Possible Questions - A sequence has the first two terms $1,2, \ldots$ Show me a way to continue this sequence. And another. And another ... - A sequence has nth term $3 n^{2}+2 n-4$. Jenny writes down the first three terms as $1,12,29$. Kenny writes down the first three terms as $1,36,83$. Who do agree with? Why? What mistake has been made? - What is the same and what is different: $1,1,2,3,5,8$, ... and $4,7,11,18$, 29, ... Misconceptions - may think that it is possible to find an nth term for any sequence. A Fibonacci type sequence would require a recurrence relation instead. - may think that the word 'quadratic' involves fours. - may substitute into ax^{2} incorrectly, working out (ax) ${ }^{2}$ instead.	
Pedagogical notes (implementation)		How will understanding be assessed $\&$ recorded (Impact)	
NCETM: Departmental workshops: Sequences NCETM: Glossary The Fibonacci sequence consists of the Fibonacci numbers ($1,1,2,3,5, \ldots$), while a Fibonacci type sequence is any sequence formed by adding the two previous terms to get the next term.		End of term Assessment in December Exams in May 9BAM6 Sequences	
		How can parents help at home?	
'ribonacci solver'.		MathsWatch clips (Qualification KS3) A22, A23b	
Further reading/discussion			
Reading / Enrichment KM: Forming Fibonacci equations KM: Mathematician of the Month: Fibonacci KM: Leonardo de Pisa KM: Fibonacci solver. Students can be challenged to create one of these. KM: Sequence plotting. A grid for plotting nth term against term. KM: Maths to Infinity: Sequences NRICH: Fibs	Literacy Term Term-to-term rule Position-to-term rule nth term Generate Linear Quadratic First (second) difference Fibonacci number Fibonacci sequence	Numeracy Links	Careers Links Artist Biologist

