Subject	Year		Month	
Mathematics	7		November	
Topic:				
FACTORS AND MULTIPLES			5 LESSONS	
Content (Intent)				
Prior Learning KEY STAGE 2: - Find factors of integers - Recall multiplication facts to 12×12 and associated division facts - Divisibility checks for $2,3,5,9$ - Find multiples of numbers First half term - Divisibility checks repeated - Power and Roots introduced		Future Learning - Y8: Product of Primes, HCF, LCM (with Venn Diagrams) - Y10: Product of primes extended		
Objectives - Full understanding of language: factors, multiples, primes, Square number, Cube number, (triangular number) - Find common factors of numbers - Find the HCF of two (or three) numbers - Find the LCM of two (or three) numbers - Recognise and solve problems involving LCM and HCF		For teaching purposes Possible questions - Eratosthenes Sieve: why is there no need to go further than the multiples of 7 ? If this method was extended to test prime numbers up to 200, how far would you need to go ? - Kenny says '20 is a square number because $10^{2}=20^{\prime}$. Explain why Kenny is wrong. - Always / Sometimes / Never: The lowest common multiple of two numbers is found by multiplying the two numbers together. Possible misconceptions - Many pupils believe that 1 is a prime number - a misconception which can arise if the definition is taken as 'a number which is divisible by itself and 1^{\prime} - A common misconception is to believe that $5^{3}=5 \times 3=15$ - Extra (Set 1 and 2): The square root of a number can also be negative.		
Pedagogical notes (implementation)		How will understanding be assessed \& recorded (Impact)		
A prime number is a number with exactly two factors. This to minimize the misconception of "1" Do not use "divisible by one and itself" Recognising the language in worded problems: smallest possible, longest possible, in common, same, etc.		BAM task 3 - HCF and LCM End of term Assessment in December End of Year Assessment in June/July		
		How can parents help at home?		
		MathsWatch clips (Qualification KS3) N10, N11, N30a, N31a, N31b		
Further reading/discussion				
Reading / Enrichment KM: Perfect numbers: includes use of factors, primes and powers KM: Exploring primes activities: Factors of square numbers; Mersenne primes; LCM sequence; n^{2} and $(n+1)^{2} ; n^{2}$ and $n^{2}+n ; n^{2}+1$; $n!+1 ; n!-1 ; x^{2}+x+41$ KM: Use the method of $\underline{\text { Eratosthenes sieveto }}$ identify prime numbers, but on a grid 6 across by 17 down instead. What do you notice? KM: Square number puzzle KM: History and Culture: Goldbach's Conjectures NRICH: Factors and multiples	Literacy Multiples and Factors Common LCM and HCF Square number, Cube number powers, indices Prime number Extra: link to Linear sequences Triangular number		Numeracy Links	Careers Links Cryptography GCHQ Encryption Basic numeracy requirement for all careers

