/Computing@Balcarras_

		YEAR	TERM
A-Level Computer Science (OCR)	13	1
	UNIT		
Во	olean Algebra		
	INTENT		
PRIOR LEARNING (TOPIC) – Representing Data	a & System Archit	ecture	
At a low-level, computers are made up of logic g to make circuits to perform operations such as a unit pupils explore how this happens. Some very covered at GCSE, however, this unit quickly goes of the unit pupils should be confident in represe Boolean expressions.	ddition or storing simple grounding into a lot more d	values. In this g in this was epth. By the end	Specification Points: This unit covers point 1.4.3
FUTURE LEARNING (TOPIC): Post-18 Electrical	Engineering Cour	ses	
 IMPLEMENTATION Throughout the unit pupils will cover: Representing logic circuits using circuit diagrams, truth tables and Boolean Algebra. Using the rules of Boolean algebra, including De Morgan's Law, to simplify Boolean algebra expressions. Representing Boolean algebra expressions as Karnaugh maps and how to use these to simplify circuits. The use and behaviour of D type flip flops and adders. 		IMPACTAssessment: Pupils will sit a 40 mark in- lesson assessment at the end of the unit, the score from which will be translated into an A* to E style grading.In addition to this, pupils will complete regular exam style questions both during lesson and as part of homework tasks.	
 and Boolean Algebra. Using the rules of Boolean algebra, including Law, to simplify Boolean algebra expressions. Representing Boolean algebra expressions as and how to use these to simplify circuits. 	De Morgan's Karnaugh maps	the score from wh into an A* to E sty In addition to this, regular exam style	ich will be translated le grading. , pupils will complete e questions both durin
 and Boolean Algebra. Using the rules of Boolean algebra, including Law, to simplify Boolean algebra expressions. Representing Boolean algebra expressions as and how to use these to simplify circuits. 	De Morgan's Karnaugh maps	the score from wh into an A* to E sty In addition to this, regular exam style	ich will be translated le grading. , pupils will complete e questions both during
 and Boolean Algebra. Using the rules of Boolean algebra, including Law, to simplify Boolean algebra expressions. Representing Boolean algebra expressions as and how to use these to simplify circuits. The use and behaviour of D type flip flops and HOW CAN PARENTS HELP AT HOME? All course materials are available via Firefly. In the supporting their child's revision. This can include 	De Morgan's Karnaugh maps d adders. e build-up to the	the score from wh into an A* to E sty In addition to this, regular exam style lesson and as part assessment, parent	ich will be translated le grading. , pupils will complete e questions both durin c of homework tasks. s can help by
 and Boolean Algebra. Using the rules of Boolean algebra, including Law, to simplify Boolean algebra expressions. Representing Boolean algebra expressions as and how to use these to simplify circuits. The use and behaviour of D type flip flops and 	De Morgan's Karnaugh maps d adders. e build-up to the e testing them usin	the score from wh into an A* to E sty In addition to this, regular exam style lesson and as part assessment, parent	ich will be translated le grading. , pupils will complete e questions both during c of homework tasks. s can help by

Gates, AND, OR, NOT, XOR, Truth Table, De Morgan's Law, Distribution, Association, Commutation, Double Negation, D Type Flip Flop, Half Bit Adder, Full Bit Adder, Karnaugh Map.